马斯克错失纯视觉NOA中国首发!

更新时间:2023-10-19 08:09:02作者:橙橘网

马斯克错失纯视觉NOA中国首发!

贾浩楠 发自 凹非寺量子位 | 公众号 QbitAI

极越汽车,搞了一个车圈科技圈大新闻:纯视觉NOA国内首发上路!

一段陆家嘴点到点领航辅助驾驶的实拍视频刚刚被公开 :



视频中极越01一镜到底、全程不接管、带领航辅助,而且ODD包含高速、城市以及泊车场景,全程解放用户不用自己开。

这样的Demo在自动驾驶行业其实不稀奇,Robotaxi早就实现。但令人吃惊的是,极越01的这种私家车智驾系统,在国内首个布局、跑通纯视觉方案,不再把激光雷达作为唯一的智能驾解决方案——通常行业认为这是现阶段高阶智驾的必须条件。

中国首个,且在全球范围内和北美地区的特斯拉FSD处于同一梯队。

这也是李彦宏刚刚在百度世界大会上所说“大模型重构自动驾驶”的成果和体现之一。



同样是今年智能驾驶所有玩家内卷的一个方向:视觉为主落地NOA,实现轻传感器高功能落地。

只不过极越汽车和背后关系紧密的百度Apollo,也许在其他玩家还在验证研发的阶段,就要率先落地了。

最终的智驾量产版本留有悬念,10月27日举办的极越01上市发布会上,这款主打开箱即用的高阶智驾产品即将交卷。

不过用户疑问也随之而来,再次引发了行业对于智驾技术路线的讨论:摆脱激光雷达,靠谱吗?极越01演示的这套智驾方案有哪些技术亮点?

纯视觉高阶智驾,体验如何?

点到点领航辅助驾驶,是指在目前的人机共驾阶段,绝大部分的驾驶由系统辅助完成,司机位的职责对车辆的行驶状态保持时刻关注。

极越01的测试全程,包含了城市高频使用场景,比如上海浦东区CBD,这属于城区内的NOA功能;还包括上下高速匝道、隧道内的连续领航辅助,以及复杂路口的人车混行等等。

其中的基础能力,包括自动避让、基础的跟车、车道保持、定速巡航等等。



更高阶的能力,包括综合考虑安全因素和通勤效率,自行变道(不用提前拨杆)、识别红绿灯、根据导航自主规划路线…

我们先看其中最值得关注的亮点,实测一镜到底视频长度约9分钟,放在最后。

首先是隧道内的长距离智能驾驶,在隧道内因为GPS信号弱或离线,需要系统较为精准的定位能力,同时还要面对隧道内光照条件差、周围障碍物密集的挑战:



除了正常行驶之外,极越01还能自主识别进入隧道内的分流岔路:



城市道路内,极越01除了能按照导航信息,自主规划转弯,还能在汇入、驶出主路的过程中,主动绕行路边故障车辆:



以及主动避让占道的行人、两轮车:



高速场景下,自主进出匝道、汇入汇出车流,并且主动避让加塞车辆:



当然,极越01在路上为了保证安全,对于行人、加塞的处理方式是主动避让,但在安全的情况下也会通行效率优先,主动选择更快的车道:



如果这样的表现是一辆Robotaxi,那没什么值得惊奇的。毕竟Robotaxi上传感器类型、数量丰富,而且也拥有相对固定的线路。

但这是一辆需要考虑量产、交付给用户的私家车,而且是随机在上海核心城区挑战。

是国内第一个,很难有直接对比的参考,毕竟其他的“遥遥领先”都是在重传感器的加持下实现的类似功能。

在极越01之前,全球范围内,只有特斯拉的FSD展现过类似的能力。

极越CEO夏一平在这件事上是很不“谦虚”的:

行业标杆,而且一定比特斯拉FSD强。

百度Apollo自动驾驶能力赋能了这套系统,百度智能驾驶事业群(IDG)技术委员会主席王亮进一步解释了一下:

考虑到特斯拉FSD的数据手机几乎全部基于北美路况,所以它真正落地中国的时候,还要面临复杂的的泛化性挑战。

摆脱激光雷达,技术上靠谱吗?

目前,具备城市领航辅助能力的智能车,普遍常见1-2个激光雷达的配置,也有的是3个,都宣称自己是最可靠最领先的。

但摆脱了激光雷达的智能驾驶系统,对于不了解细节的用户,不免产生疑问:多个硬件多份保障,没有激光雷达的智驾,能靠谱吗?

回答这个问题,首先要弄明白激光雷达在车上有啥用。

量产智能驾驶系统,你可以把它看成一个AI司机,它开车的方式和人类相同,也是用眼睛去感知一切信息。这是计算机视觉学科自然而然衍生出的一个应用方向。



这个AI司机的“眼睛”,就是车端的摄像头。而让AI司机分辨出看到的目标、物体的“大脑”就是背后的感知识别算法。

算法的本质是AI,而不是“if else”的判断指令,因为你不可能穷举世界上每一种交通参与者或场景状况。既然是AI,它就需要大量的数据学习,作为感知识别的基础。

但是这里有一个问题,人类看到的世界,是3维立体的,你可以凭直觉判断一个目标的形状、大小,距离远近。但摄像头捕捉到的图像信息,却是2维平面,同时AI又不具备和人类一样的“直觉”。



所以从2维数据复现构建出3维实时场景,是纯视觉智能驾驶系统的最大挑战。当然还有另一个难题是路上的异形物、异型车层出不穷,在有限数据集上学习训练的AI,难以完全识别覆盖。

在算法还不发达、车端芯片算力支持还不够的早期,给“眼神”不好的纯视觉系统增加一种感官,就成了最好的办法——激光雷达登场。

激光雷达发射红外光,碰到障碍物一定会产生相应的回波信号,这其中自然包含了目标的形状、大小,而通过回波时间,还能计算出距离信息。



相当于激光雷达通过“触觉”,构建场景的3维数据,给系统作为图像数据外的参考补充:视觉错检漏检的,激光雷达告诉你那还有一个XX目标。

但激光雷达成本高昂,目前在高档豪华车以外,难以随车标配。并且红外光回波信号的噪音抑制、信号处理等等,需要占用大量系统资源。而且激光雷达也不是万无一失,对于回波信号的识别,同样由算法完成,自然也有针对它的对抗攻击手段。

不依赖激光雷达的纯视觉方案要解决的关键问题,就是找出能够替代3维数据实时还原构建的视觉方法

极越所展示的方式是OCC,Occupancy Networks,占用网络。

这项技术去年在特斯拉AI Day上被首次公开应用,后来特斯拉又在CVPR 2023的workshop上做了进一步阐述。



系统的主要感知识别数据仍然是视觉图像,摄像头采集的数据通过基于Transformer的BEV网络,应用自注意力机制进行特征提取,获得当前场景各个目标的语义分割信息,并加入时序特征。

OCC的作用,是在传统3D目标识别能力之上,通过体素(Voxel)化的方式理解和处理空间信息。



可以简单理解为将场景空间分割成单位化的“方块”,感知系统可以对3D空间的可通行区域进行高保真度还原。不需要考虑物体是什么,只考虑当下这个“方块”是否被占用:



OCC从根本上避免传统视觉对非训练集内物体的漏检问题,使模型的泛化能力大幅提升,能更好适应不同场景和环境。

而且对比激光雷达产生的稀疏且不连续的点云,摄像头采集的信息内容更丰富,更好地将3D几何信息与语义信息融合,更准确还原3D场景。

OCC的作用,同样提供了空间尺度下的物体大小、形状、距离等等信息,而且不需要额外传感器,依然使用摄像头采集的图像信息。

这也是极越01基于此前“纯视觉为主+激光雷达”的技术路线,又开发了“无激光雷达”智驾方案的关键,看似没了一项重要冗余,却依然能够实现点到点智能驾驶可靠性的关键技术。

重新审视激光雷达,高阶智驾新路线?

极越CEO夏一平透露,从2021年末就和王亮博士探讨纯视觉智能驾驶技术方案的可行性。

从用户端来看,这样的方案目前似乎有些激进,因为这两年激光雷达有成为高阶智驾标配之势。

但技术端、供应链一侧的震动,早已经酝酿、产生并传导:高阶智驾普及,传感器越来越轻,成本越来越经济



之前耕耘自动驾驶、AI技术多年的玩家,比如大疆、商汤、旷视等等,今年纷纷公布智能驾驶量产产品路线,瞄准的是从2024以及后3年的新车型。

无一例外将高阶智驾的普及门槛越降越低,有鲜明且统一的标志:入门级方案成本不过千元级,功能至少是高速NOA起步。

激光雷达在这些方案中,逐渐成为选配或非必须,“领土”退守售价更贵、规模更小的车型上。

而且其退守有加剧之势:行业头部玩家公布的最新方案中,纯视觉系统实现的功能已经覆盖到城市通勤NOA。



王亮博士解释了核心原因:

“实际上,任何自动驾驶、智能汽车行业从业者都清楚,激光雷达不是自动驾驶的终局”。
这并不涉及什么“路线之争”,只是技术发展不同阶段的呈现。

他透露,2019年之前的尝试证明,纯视觉的方法要达到高可靠且体验良好的自动驾驶功能,“太难了”。所以激光雷达成了系统必不可少的传感器,相当于给当时“眼神不好”的AI司机,配了一根可以“触摸”环境的拐杖。

但激光雷达也有不尽完美的地方。其一是成本高昂(目前仍在数千元级别),是量产智驾普及、L4落地规模上量的主要障碍;其二是激光雷达让系统数据类型繁杂,数据量剧增,增添算法、算力资源负担。

所以“摆脱掉激光雷达依赖”实际上成了所有量产智能驾驶玩家的主动选择,也成了车企作为甲方的客观需求。



这同样也是老百姓的需求。因为1个激光雷达=至少数千元BOM成本,对于大众消费的20万元级或更加经济的车型,这样的智驾系统只能是尝鲜选配,没法普及。这也是目前行业的普遍状况。

智能化作为核心竞争力和产品价值,获得用户认可重视,极越和百度Apollo联合研发纯视觉方案的逻辑是:

用户不会认为多了几个硬件就是高级的,反而车端轻传感器减成本方案,背后的算力、数据、算法研发投入更大,这才是更高级更昂贵的智驾方案。
但这些软件端的研发成本不同于硬件,不是由用户直接买单,而是摊销进了规模化量产。

预售价25.99万的极越01,想做中国智能车的一个大胆尝试:点到点高阶智驾普及到大众消费车型,而且智能硬件标配,不选装不加价。

并且前端方案配置清晰、后端技术体系透明。



于是这一阶段比拼性价比的智能驾驶量产竞争几乎已宣告结束,下一阶段卷的方向更加清晰:更高的通行效率、更丝滑的乘坐体验,和更可靠的功能安全——细节处见功夫。

不再依赖激光雷达的高阶智驾,不是主观上的激进,而是技术和行业发展到一定阶段的必然和客观体现。

只不过令人吃惊的是,极越展示的技术实力,让这个标志性里程碑的到来大大加速了。

为您推荐

合肥南二环西延部分路段封闭施工通知(11月4日起)

南二环西延(西二环-永和路)工程1、2标段定于2023年11月3日24:00对施工范围内道路进行一阶段封闭施工

2023-10-30 11:18

2023合肥限行规定最新消(持续更新)

从即日起对巢湖市部分路段实行限制大型货车(黄牌货车)通行,对违反通告规定,影响交通安全的违法行为,将依法予以处罚。

2023-10-30 11:18

江西省高校诵读红色家书讲述英烈故事直播在哪看(附回放入口)

江西省高校诵读红色家书讲述英烈故事直播在江西省教育厅视频号观看,视频回放用手机进入江西省教育厅视频号,点击“直播回放”即可收看。

2023-10-30 11:17

江西诵读红色家书 讲述英烈故事作文(400/600/800字)

烽火连三月,家书抵万金,生离死别关头的革命家书,字里行间,有离人的惦念、牵挂,更多的是对胜利的期待。本文为你介绍作文三篇范文。

2023-10-30 11:17

2023江西诵读红色家书讲述英烈故事视频回放+内容+时间

2023江西诵读红色家书讲述英烈故事视频回放可用手机进入江西省教育厅视频号,点击“直播回放”即可收看。直播内容及时间详见正文。

2023-10-30 11:17

2023江西诵读红色家书讲述英烈故事巡演直播入口+回放入口

江西高校“诵读红色家书讲述英烈故事”巡演来啦!第41场直播时间为10月29日(周日)14:30,直播平台为江西省教育厅。

2023-10-30 11:17